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C H A P T E R  1  

Introduction 

BACKGROUND 
Modern methods for road pavement condition monitoring take advantage of new technologies in precision 
instrumentation to realize automatic measurements [1]. For example, the laser crack measurement systems 
(LCMS) use high-speed cameras, custom optics, and laser line projectors to acquire 2D images and high-
resolution 3D profiles of road surfaces [2]. However these present pavement-monitoring procedures are 
time consuming and costly [3], which limits their abilities to scale in frequency and coverage. Recently the 
U.S. Department of Transportation (DOT) has initiated a Connected Vehicle Program, which promotes 
applying vehicle-to-X (V2X) data to pavement monitoring. A study by the Center for Automotive Research 
and administered by Michigan DOT [4] reports that using V2X data for pavement monitoring is possible 
but it will require novel and proactive techniques of data use and management. The state-of-the-art research 
in this domain employs embedded crowdsensing via mobile phones to provide a low-cost approach to 
pervasive-coverage sensing. However, it presents a couple of unsolved issues along with technical and 
social challenges including sensing accuracy, the fidelity of mobile sensing results, and incentive schemes 
for crowdsensing participation.   

OBJECTIVE 
The objective of this project was to design, implement, and test a crowdsensing-based system that allows 
for pavement condition monitoring in a low-cost, reliable, and rapid manner.  

POTENTIAL FOR IMPACTING THE STATE OF PRACTICE 
The success of this project will impact the state of practice by providing an alternative approach to pavement 
monitoring and decision making, which will have advantages over existing practices in monitoring costs, 
frequency, and coverage.  
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C H A P T E R  2  

Methodology 

INTRODUCTION 
This project was carried out in two thrusts of work: (1) computer-vision based pavement distress 
crowdsensing and (2) incentive mechanisms for pavement crowdsensing. In the first thrust, we have 
developed a crowdsensing system with a mobile application that supports road damage detection using deep 
neural networks with images captured through a smartphone. The code repository is available at 
https://github.com/LONGLAB-projects/mobile-pavement-monitoring. In the second thrust, we have 
evaluated nine incentive mechanisms through simulations in terms of their platform costs and total 
operation times. Our results provide guidance in selecting the best incentive mechanism in different settings 
of pavement crowdsensing [5]. 

COMPUTER-VISION BASED PAVEMENT DISTRESS CROWDSENSING  
The pavement crowdsensing system consists of three components: a mobile application as the front end 
interacting with crowdsensing participants, the backend including a database, and a dashboard for DOT-
related personnel to visualize the crowdsensing results. 
 
We have designed and implemented the mobile application on the Android platform. It uses a state-of-the-
art machine learning model for detecting pavement damage based on images captured by the Android-
phone camera and classifying them into eight types with corresponding confidence [6]. The types include 
(1) liner crack, longitudinal, wheel mark part; (2) liner crack, longitudinal, construction joint part; (3) liner 
crack, lateral, equal interval; (4) liner crack, lateral, construction joint part; (5) alligator crack; (6) rutting, 
bump, pothole, separation; (7) white line blur; and (8) crosswalk blur. We have chosen this machine 
learning model because it “achieved recalls and precisions greater than 75% with an inference time of 1.5 
s on a smartphone.”[6] Here the recall is defined as the number of true positives divided by the number of 
true positives plus the number of false negatives, and the precision is defined as the number of true positives 
divided by the number of true positives plus the number of false positives.  
 
Once the confidence level associated with a pavement damage type is higher than a threshold (e.g., 60%) 
the mobile application will collect the latitude and longitude information of the current location, the image, 
and the confidence from the smartphone, and send them to the backend server (Figure 1a). When the 
backend server receives the data, it will verify the data and generate a certificate for them. With the 
certificate, the data can be saved in a real-time database. When the DOT-related personnel opens the 
dashboard web page, all stored data will be rendered on a Google Map as markers (Figure 1b). 
 
 
 
 

https://github.com/LONGLAB-projects/mobile-pavement-monitoring
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(a)                                                                                (b) 

Figure 1.  (a) User interface of the mobile application;  (b) user interface of the dashboard. 

Android Application 
The application has been developed in Android Studio. It starts with a homepage that supports three buttons 
corresponding to “Drive & Detect,” “Contact Us,” and “Privacy Policy.” Clicking the “Drive & Detect” 
button leads to a Detection page: If the image captured by the smartphone camera contains pavement 
damage, the object detection model based on convolutional neural networks [6] will delimit a bounding box 
and generate the corresponding confidence and damage type. At the bottom of the Detection page, there is 
a button which the user can click to go back to the homepage when they want to end the detection. The 
application also provides “Contact Us” and “Privacy Policy” pages for users to submit feedback and read 
policy information. 
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Database in the Backend 
We chose Firebase, a cloud-hosted realtime NoSQL database, to store all data in the backend. The data 
structure in the Firebase database is like a JSON (JavaScript Object Notation) tree and all data are stored in 
the database in the form of key-value pairs. There are two collections in the database: one is used to store 
the feedback from users and the other is used to store the data about pavement distresses. Figure 2 depicts 
a snippet of the data structure recording the pavement distress information.  

 
Figure 2. Data structure used to represent pavement distress data in Firebase. 

Dashboard 
The project aims to help the Department of Transportation to monitor road pavement conditions in a low-
cost way. It is important to provide a visualization of the pavement distresses detected to DOT-related 
personnel to help them decide pavement maintenance and repair needs. Our system has a dashboard that 
offers an overview of all the saved data in Firebase. It marks all positions on a Google map as red and when 
one clicks on a marker, it will display the pavement distress information at the corresponding location, 
which includes the precise location data, the image of the road pavement condition, and the pavement 
distress type as shown in Figure 1b. 

INCENTIVE MECHANISMS FOR PAVEMENT CROWDSENSING  
During the 99th Transportation Research Board Annual Meeting held in Washington, DC on Jan. 14, 2020, 
we demonstrated our first version of the pavement crowdsensing system [7] to visitors to our booth and 
DOT members, including then Deputy Assistant Secretary for Research and Technology. An important 
question that had been discussed during our demo was how incentive mechanisms would impact the 
performance of pavement crowdsensing. In fact, how to properly motivate users to participate in 
crowdsensing tasks with a low platform cost remains an open question.  
 
In our research, we modeled the pavement crowdsensing problem and designed new incentive mechanisms 
based on a platform-driven greedy algorithm. The rewards of sensing tasks are determined by the specific 
incentive mechanisms. With this algorithm, the user selects the sensing task that can provide the highest 
net profit margin. These incentive mechanisms are evaluated and compared in different scenarios in terms 
of the platform cost and the overall task completion time through extensive simulations. Our methods can 
avoid the cost explosion problem observed in data-reverse-auction incentive mechanisms, and the best of 
them can reduce the overall completion time by half compared to task-reverse-auction incentive 
mechanisms. 
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Research Problem and its Model 
For our research problem, the platform (i.e., the pavement crowdsensing system) needs pavement condition 
data in certain areas. Thus, we need to motivate the users using the platform to collect the data. In this case, 
our research objective was to design an appropriate incentive mechanism to help the platform achieve an 
area coverage target with a low cost and total operation time. Based on the comparison results of incentive 
mechanisms, the platform can choose the best incentive mechanism with the lowest budget for different 
area coverage targets.  
 
Our model of the research problem contains three entities: the area, the sensing task, and the user. Each 
entity can be described by its behavior and/or its relationship with other entities:  
 

1.  The area entity is modeled according to the Manhattan model as a grid of cells without loss of 
generality for incentive mechanism studies. The grid has a uniform distribution of cost for traveling 
across adjacent cells, and no missing cells within. The area represents the types of roads that users 
may encounter and the varying costs of traveling with different pavement conditions. Meanwhile, 
the area has another constraint for users. Users can only move horizontally or vertically in one step 
at a time.  

 
2.  The sensing task entity contains information on the location of interest and the monetary incentive 

associated with user participation. The sensing tasks specify roads where pavement sensing is 
needed.  

 
3.  The user entity represents users participating in the crowdsensing. As users continue to participate 

and collect and report data for rewards, they accumulate monetary rewards and incur operation costs. 

Incentive Mechanisms 
We have designed a platform-driven greedy algorithm that selects an available task that gives the maximum 
profit to the user. The maximum profit is impacted by the incentive mechanism. After this algorithm finds 
out the task, which can provide the maximum profit for a user, the user needs to check whether the net 
profit margin of the task is greater than a threshold. If positive, the user selects the task; otherwise, the user 
drops out. 
 
We studied nine incentive mechanisms: (1) Task-Reverse Auction, (2) Static Uniform (SU), (3) Dynamic 
Relative (DR), (4) Dynamic User Centric (DUC), (5) Static User Centric (SUC), (6) Dynamic Task Centric 
(DTC), (7) Static Task Centric (STC), (8) Dynamic Pit (DPIT), and (9) Static Pit (SPIT) incentive 
mechanisms. Their mathematical formulas are described in Appendix I. 

Evaluation Metrics 
The purpose of the evaluation metrics is to offer a means of differentiating the incentive mechanisms and 
to guide the design of the crowdsensing solutions. The simulations for incentive mechanism evaluations 
consist of an extensive number of trials. In each trial, we initialize the tasks and users at the beginning and 
the simulation runs until all tasks are completed or all users drop out. The details of the evaluation metrics 
are described as follows.  
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1.   The total operation time tf represents the duration of a trial. In one trial, a timer starts from time 0 
and ends at the time tf when all sensing tasks are completed or all users drop out. While two incentive 
mechanisms may have an equal success rate sr, one incentive mechanism might have less total 
operation time tf. This implies that users have been incentivized to select and perform tasks in 
efficient ways.  

 
2.   The platform cost is the amount of money that the platform pays the users through sensing task 

rewards. The surplus is the portion of the budget that is not used by the end of a trial. A lower platform 
cost reflects the ability of incentive mechanisms to reduce the cost for sensing task rewards. 
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C H A P T E R  3  

Findings 

COMPUTER-VISION BASED PAVEMENT DISTRESS CROWDSENSING  

System Evaluation 
We have tested the pavement crowdsensing system with the goal to ensure that the AUT (application under 
testing) conforms to functional and nonfunctional requirements and makes sure that all bugs or issues are 
identified and fixed before going live. We have identified which functional or nonfunctional requirements 
would be tested, including (1) whether the application can run without a crash; (2) when there is suspected 
road damage (the confidence level is higher than the threshold), whether the database can receive related 
data or not; and (3) whether the dashboard can get all data from the database and render them on a Google 
Map or not. Integration testing was conducted to evaluate the system with respect to the above-mentioned 
three aspects and the system passed the test. The crowdsensing-based system developed enables pavement 
condition monitoring in a low-cost, reliable, and rapid manner. 

INCENTIVE MECHANISMS FOR PAVEMENT CROWDSENSING  

Incentive Mechanism Comparison 
Incentive mechanisms were evaluated and compared in three scenarios corresponding to low, medium, and 
high area coverage percentages for pavement crowdsensing with different numbers of users.  
 

 
(a)                                                                                  (b) 

Figure 3. Incentive mechanism comparison: (a) 25% area coverage and (b) 50% area coverage. 
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The platform cost is used to order the incentive mechanisms based on their performance data as shown in 
Figure 3. The minimal budgets shown in Figure 3 are the lowest budgets that can realize a 100% success 
rate for the targeted area coverage percentage. This means that any budgets higher than this value allow the 
platform to achieve the 100% success rate for the targeted area coverage. 
 
Given 25% area coverage, Figure 3a shows that the SU and DR incentive mechanisms respectively have 
the lowest platform costs when the platform has 3 users and 15 users. Apart from this, the static and dynamic 
pit incentive mechanisms always rank among the top three incentive mechanisms in all scenarios. Given 
50% area coverage, Figure 3b shows that static and dynamic pit incentive mechanisms still have the best 
performances of the platform cost in all scenarios. Even though the DTC incentive mechanism achieved 
the lowest platform cost in 50% area coverage with 45 users, this observation does not conflict with the 
previous statement. Figure 3 in Appendix I depicts the results corresponding to 75% area coverage, which 
confirms that SPIT and DPIT always have the lowest platform cost regardless of how many users the 
platform has. Based on the observations described above, we conclude that SPIT and DPIT are two 
incentive mechanisms among the ones evaluated that have the lowest platform cost.  
 
Our design of incentive mechanism can avoid the cost explosion problem observed in data-reverse-auction 
incentive mechanisms, and the best of them can reduce the overall completion time by half compared to 
task-reverse-auction incentive mechanisms. Details are described in Appendix I of this report. 
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C H A P T E R  4  

Recommendations 

COMPUTER-VISION BASED PAVEMENT DISTRESS CROWDSENSING 

Large-scale Deployment and Evaluations 
We have successfully designed, developed, and tested the pavement crowdsensing system. Due to the time 
limitation and the pandemic situation, we have not been able to conduct large-scale deployment and 
evaluations of the system. Thus we recommend recruiting volunteers on a large scale and conducting 
evaluations of the system in terms of its scalability and performance in the future.  

Security of the Crowdsensing System 
The pavement crowdsensing system supports secure communication between front-end mobile application 
and the backend server. However, it is possible that malicious users may initiate attacks to the system by 
providing fake data, such as a fake image for a certain location. A potential solution is to use machine 
learning to address this issue so that consensus among the crowd will help mitigate the impact by the fake 
data provided by malicious attackers. We recommend studying approaches that enhance the security of the 
crowdsensing system in the future.  

Pavement Distress Indicator Development 
The pavement crowdsensing system can detect pavement distress conditions and categorize them into eight 
existing categories. DOT-related personnel can use the dashboard to check the images and data to decide 
pavement maintenance and repairement needs. It should be helpful if indicators could be developed (e.g., 
image-based distress indictors and accelerometer-based roughness indictors for existing pavement 
conditions) based on the crowdsensing data and their correlations with conventional IRI (International 
Roughness Index) and PCI (Pavement Condition Index) could be established for decision making. 

INCENTIVE MECHANISMS FOR PAVEMENT CROWDSENSING 

Large-scale Simulations and Experiments 
We have identified a couple of incentive mechanisms for crowdsensing based on our incentive mechanism 
design that properly stimulate users to work for the platform and bound/reduce platform cost and overall 
completion time of the sensing tasks. We recommend that large-scale simulations and real-life experiments 
through integrating the incentive mechanisms in our pavement crowdsensing system should be conducted 
in the future. 
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Abstract

Crowdsensing nowadays is regarded as an effective method to collect specific data
due to its pervasiveness and convenience. There are projects using crowdsensing to
collect pavement condition data. However, how to properly motivate users to partic-
ipate in crowdsensing tasks with a low platform cost remains an open question. In
our research, we model the pavement crowdsensing problem and design new incentive
mechanisms based on a platform-driven greedy algorithm. The rewards of sensing tasks
are determined by the specific incentive mechanisms. With this algorithm, the user
selects the sensing task that can provide the highest net profit margin. These incentive
mechanisms are evaluated and compared in different scenarios in terms of the platform
cost and the overall task completion time through extensive simulations. Our methods
can avoid the cost explosion problem observed in data-reverse-auction incentive mech-
anisms, and the best of them can reduce the overall completion time by half compared
to task-reverse-auction incentive mechanisms.

Keywords: crowdsensing, pavement monitoring, monetary incentive, incentive mecha-
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1 Introduction

As road infrastructure continues to increase in size and complexity, new and innovative
solutions must be developed to cope with road degradation. Current methods used to collect
road condition information do not mitigate the stress in covering 4.18 million miles of road in
the U.S [1]. One viable solution is to create a crowdsensing platform for smartphone users to
collect road pavement data. For example, detecting and reporting poor road conditions by
using embedded cameras, accelerometers, and 4G/5G networks. To support such a network,
an active user base must be established and maintained. Users’ participation is at the
heart of creating diverse data pools and addressing quality road condition information. The
component needed to satiate users’ drive, and to generate the aforementioned benefits, is
described as the incentive mechanism.

As we want to motivate more people to participate in performing the sensing tasks, an
appropriate incentive mechanism allows the platform to properly stimulate the users to work
for the platform and bound/reduce platform cost and overall completion time of the sensing
tasks, which is also called total operation time in this report.

In our research, the platform wants to economically collect pavement condition data for
a certain target area. In this report, we introduce a set of incentive mechanisms and study
how pavement crowdsensing may cover a target area with the lowest platform cost and the
smallest total operation time. The incentive mechanisms we design are based on a platform-
driven greedy algorithm, which motivates users to select sensing tasks that can provide
the highest net profit margin. Each incentive mechanism has a unique reward generation
formula, which is designed within the context of road coverage. We have evaluated 9 incentive
mechanisms through simulations in terms of their platform costs and total operation times.
Our results provide guidance in selecting the best incentive mechanism in different settings
of pavement crowdsensing.

Here are the key contributions of our research:

• The incentive mechanisms we design can effectively avoid the cost explosion problem
as users choose their sensing tasks before starting to work on them so that a sensing
task can only be done by no more than one user.

• Our incentive mechanism enables users to select sensing tasks that offer the highest
net profit margin based on a greedy algorithm.

• The total operation time or the overall completion time of our approach is reduced
comparing to that of the task-reverse-auction incentive mechanism. Our research helps
the pavement crowdsensing platform to find a solution to crowd-sense the target area
within a limited budget.

The rest of the report is organized as follows. We first survey the related work in Section
II. Then we introduce the research problem and its model in Section III and present our
incentive mechanism solutions in Section IV. Section V describes how we construct simula-
tions for evaluating the incentive mechanisms. Section VI shows and discusses the evaluation
results and Section VII concludes this report.
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2 Related Work

2.1 Existing monetary incentive mechanisms

Zhang [14] and Jamies [11] both assort incentive mechanisms by the types of incentives. In
Jamies [11], monetary and non-monetary incentives are compared. Non-monetary incentive
mechanisms [2, 3] rely on the continued participation of users due to intrinsic motivations.
Monetary incentive mechanisms [4–10,15,16] rely on the direct backing of fiat money or in-
direct backing of fiat money through alternative currencies. As a result, using non-monetary
incentives cannot assure that enough users participate in sensing tasks. According to a sur-
vey paper [14], monetary incentives will be more likely to motivate users to complete the
sensing tasks. Therefore, a monetary incentive mechanism is more fitting for crowdsensing
and will be considered in our research. However, some monetary incentive mechanisms [5,10]
have different shortages such as a cost explosion problem [14] while others may not fit in
our research scenarios because they target at achieving optimal data quality [6, 10] and
fairness [11]. Here are some brief descriptions of three monetary incentive mechanisms.

• For task-reverse-auction incentive mechanisms [15–17], they use a task-reverse-auction
format to design their incentive mechanisms. The users would bid on the tasks posted
by the platform. Then, the user who bids the lowest price can get the opportunity to
perform the sensing task.

• For data-reverse-auction incentive mechanisms [4, 10], they use a data-reverse-auction
format to design incentive mechanisms. In the auction process, users offer their sensing
data of tasks and their prices to the platform. Then the platform would select the data
that satisfies its requirement and pay for the price.

• In the platform-centric model [6], it treats the crowdsensing problem as a Stackelberg
game. By changing the reward of the task, both users and the platform would reach a
Nash equilibrium.

2.2 Comparison with three types of incentive mechanisms

Most of the existing incentive mechanisms are designed by auction theory and game the-
ory. In this subsection, we compare our incentive mechanisms with three existing types of
incentive mechanisms.

For the task-reverse-auction incentive mechanisms [15–17], their auction style cannot
guarantee that the platform selects the nearby users to complete the sensing tasks because
of untruthful bids [16]. In this situation, the user who is far away from a sensing task can
win the auction. Further distances result in a longer travel time for users. Thus, the task-
reverse-auction incentive mechanisms need more time to complete all the sensing tasks than
our incentive mechanisms.

For data-reverse-auction incentive mechanisms [4, 10], while multiple users collect the
data for one sensing task, only one user’s data can be accepted by the platform. In other
words, other users’ data is wasted. As a result, this type of incentive mechanisms increase
costs for car fuel, personal free time, and etc. For our incentive mechanisms, users can select
the sensing task before they go to collect the data. Thus, the cost explosion problem can be
avoided.
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The platform-centric model [6] assumes that the platform has an unlimited budget.
Therefore, it can find an optimal solution to get the highest-quality data available to the
platform. Nevertheless, this incentive mechanism still has its limitations that the platform
usually has a limited budget in practice use, which can be perfectly solved by our incentive
mechanism.

3 Research Problem and Its Model

For our research problem, the platform needs data of pavement conditions in certain areas.
Thus, we should motivate the users using the platform to collect the data. In this case,
our research objective is to design an appropriate incentive mechanism to help the platform
achieve an area coverage target with a low cost and total operation time. Based on the
comparison results of incentive mechanisms, the platform can choose the best incentive
mechanism with the lowest budget for different area coverage targets.

Our model of the research problem contains three entities: the area, the sensing task,
and the user. Each entity can be described by its behavior and/or its relationship with other
entities:

• The area entity is modeled according to the Manhattan model as a grid of cells without
loss of generality for incentive mechanism studies. The grid has a uniform distribution
of cost for traveling across adjacent cells, and no missing cells within. The area rep-
resents the types of roads that users may encounter and the varying costs of traveling
with different pavement conditions. Meanwhile, the area has another constraint for
users. Users can only move horizontally or vertically in one step at a time.

• The sensing task entity contains information on the location of interest and the mon-
etary incentive associated with user participation. The sensing tasks specify roads
where pavement sensing is needed.

• The user entity represents users participating in the crowdsensing. As users continue to
participate and collect and report data for rewards, they accumulate monetary rewards
and endure operation costs.

4 Incentive Mechanism Solutions

Modularity and scalability are critical features needed in designing a crowdsensing framework
for deploying and testing incentive mechanisms. Without these features, it would be difficult
to swap incentive mechanisms and evaluate them. Our crowdsensing platform and incentive
mechanism designs are guided by evaluation metrics described in this section.

4.1 Notations

The symbols we use in this report are shown in Table 1. Two important variables in our model
are sj and ui. They represent identification numbers of the sensing tasks and users. The tasks
sj and the users ui respectively have attributes < ui, Rij, xj, yj > and < sj, ai, Cij, xi, yi >.
For users, if sj is 0 or -1, then the user is currently not participating because the user has
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not selected a sensing task or has dropped out. For sensing tasks, if ui is 0 then the sensing
task has not been assigned to a user. In addition, if a sensing task has a reward equal to 0
then its reward has been claimed.

Table 1: Common Symbols

Symbols Meanings
ai Accumulated reward of user ui

Avgj Average distance from task sj to all users
B Budget for the platform
BR Base reward
b The side length of the grid

Cij
The travel cost for

user ui to complete task sj
CR The reward of the task that offers MP
dj,uc Distance from sj to uc
dj,tc Distance from sj to tc
IM Incentive mechanism
ki The ranking number for ui

MP Maximum profit for user ui

NPM Net profit margin
P Area coverage percentage
Pij Profit for ui of sensing task sj
PC The platform cost
Rij Reward of the sensing task sj for user ui

(S) sj (Set of) Sensing task/ID
Sa The set of available tasks
SID The index of task selected by user ui

sr The percentage of trials succeed
T Threshold for net profit margin
tc The center of locations of sensing tasks
tf Total operation time

(U) ui (Set of) User/ID
uc The center of locations of users
xi x-coordinate
yi y-coordinate

4.2 Evaluation metrics

The purpose of the evaluation metrics is to offer a means of differentiating the incentive
mechanisms and to guide the design of the crowdsensing solutions. The simulations for
incentive mechanism evaluations consist of an extensive number of trials. In each trial, we
initialize the tasks and users at the beginning and the simulation runs until all tasks are
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completed or all users drop out. The details of the evaluation metrics are described as
follows:

• The total operation time tf represents the duration of a trial. In one trial, a timer
starts from time 0 and ends at the time tf when all sensing tasks are completed or all
users drop out. While two incentive mechanisms may have an equal success rate sr,
one incentive mechanism might have less total operation time tf . This implies that
users have been incentivized to select and perform tasks in efficient ways.

• The platform cost (1) is the amount of money that the platform pays the users through
sensing task rewards. The surplus is the portion of the budget that is not used by
the end of a trial. A lower platform cost reflects the ability of incentive mechanisms
to reduce the cost for sensing task rewards.

PC = B − surplus. (1)

4.3 Platform-driven greedy algorithm

The platform-driven greedy algorithm that we use to design our incentive mechanisms is
shown in Algorithm 1. The idea of this algorithm is to select an available task that gives
the maximum profit to the user. Thus, this platform-driven greedy algorithm computes the
profit of task sj to user ui by (2).

Pij = Rij − Cij (2)

in which Rij is determined by the incentive mechanisms. We will describe more details of
Rij in the next subsection. After this algorithm finds out the task si which can provide the
maximum profit for user ui, the user ui needs to check if the net profit margin of the task si
is greater than the threshold T . If positive, the user ui selects the task; otherwise, the user
ui drops out.

4.4 Incentive mechanisms

There are 9 incentive mechanisms studied in this report. The task-reverse-auction (TRA)
incentive mechanism has been discussed in the literature [15–17]. It is known that the task-
reverse-auction incentive mechanism cannot guarantee that all tasks are completed within a
short total operation time in untruthful bid scenarios [16]. Our incentive mechanism design
has a goal to reduce the total operation time. Thus, we will compare their total operation
times in Section VI. The other 8 incentive mechanisms are described as follows.

4.4.1 Static Uniform (SU) incentive mechanism

In static uniform incentive mechanism [12], the incentives of sensing tasks are fixed values
that are uniformly distributed and have the value Rij calculated by (3). In this case, Rij is
set to the base reward BR.

Rij =
B

|S|
= BR (3)
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Algorithm 1: Platform-driven greedy algorithm
Input: ui, Sa, T where ui =< sj , ai, Cij , xi, yi >
Output: Updated ui.sj
if Sa == ∅ then

ui.sj = −1 // user ui drops out as no task is available
return

MP = −∞, CR = −∞
for sj in Sa do

Pij = Rij − Cij

if Pij ≥MP then
MP = Pij

CR = Rij

s = sj

if ui.ai == 0 then

NPM = 100× MP+CR
CR

else

NPM = 100× MP+ui.ai
ui.ai

if NPM < T then
ui.sj = −1 // ui drops out as no task gives ample profit
return

ui.ai = ui.ai + CR
ui.sj = s
return

4.4.2 Dynamic Relative (DR) incentive mechanism

The incentives change their values Rij based on the distance from currently unavailable
users and the user ui to the sensing task sj. This incentive mechanism ranks the currently
unavailable users and user ui by their distance to the sensing task sj in an increasing order.
Then, the value of incentive for the sensing task sj can be calculated by (4).

Rij =

{
BR ki = 1

BR(1− 1
2

ki
|U |) ki ≥ 2

(4)

4.4.3 Dynamic/Static User Centric (DUC/SUC) incentive mechanisms

First, the center of user locations is calculated by (5). Then we compute the distance ds,uc
from the task s to the user center by (6). The value Rij is inversely proportional to the
distance as shown in (7).

• Static case: rewards of sensing tasks are computed only once at the beginning of each
trial.

• Dynamic case: it is similar to the static case, but the only difference is that the
calculation repeats whenever a user is about to select a sensing task.

(xuc, yuc) = (

∑
i∈U xi

|U |
,

∑
i∈U yi

|U |
) (5)
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ds,uc = |xs − xuc|+ |ys − yuc| (6)

Rij = BR(1− 1

2

ds,uc
b ∗ 2

) (7)

4.4.4 Dynamic/Static Task Centric (DTC/STC) incentive mechanisms

First, the center of user locations, i.e. tc, is calculated by (8). Then we compute the distance
ds,tc from the sensing task s to the sensing task center by (9). The value Rij is inversely
proportional to the distance as shown in (10).

• Static case: rewards of sensing tasks are computed only once at the beginning of each
trial.

• Dynamic case: it is similar to the static case, but the only difference is that the
calculation repeats whenever a user is about to select a sensing task.

(xtc, ytc) = (

∑
s∈S xs

|S|
,

∑
s∈S ys

|S|
) (8)

ds,tc = |xs − xtc|+ |ys − ytc| (9)

Rij = BR(1− 1

2

ds,tc
b ∗ 2

) (10)

4.4.5 Dynamic/Static Pit (DPIT/SPIT) incentive mechanisms

In this pit-based incentive mechanism, we use all the users’ coordinates to calculate an
average distance to the sensing task s by (11). Then, we compute the incentive Rij of the
sensing task s by (12).

• Static case: rewards of sensing tasks are computed only once at the beginning of each
trial.

• Dynamic case: we need to recalculate the incentives when a user is about to select a
sensing task.

avgs =

∑
i(|xs − xi|+ |ys − yi|)

|U |
(11)

Rij =
BR

2
(1 +

avgs
b ∗ 2

) (12)

5 Simulation Settings

5.1 Parameters

The parameter tuple for each trial is < B,P, IM >. After simulations, the evaluation
metric tuple < tf , PC > will be averaged across the total number of simulation trials. In our
simulation, the unit of time and money are time unit and fiat unit. Here is the description
of the parameters of the experiments:
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• Budget B represents the quantity of money that allow the platform to use in a trial.
For this experiment, 100 data points were collected in the interval B ∈ [100.00, 1090.00]
with 10.00 spacing between each data point.

• Area coverage percentage P represents the percentage of the area that requires sensing
data. Similar to the budget, 100 trials were conducted such that P ∈ [20.0%, 79.4%]
and that there was 0.6% spacing between each data point. This interval represents a
wide range of possible target percentages for pavement crowdsensing. Note that we
round down the area coverage percentage when calculating the number of tasks.

• The final parameter is the incentive mechanism IM used in the trial. The different
IM calculate rewards of tasks differently.

5.2 Simulation execution

Given < B,P, IM >, the construction phase initializes the numbers of cells, users, and
sensing tasks in the following order:

• For each cell, any references to users or sensing tasks are cleared.

• For all users, sj, ai, Cij, xi, and yi are initialized. sj is set to 0. Each user would be
placed in a cell randomly without overlapping.

• For all sensing tasks, ui, Rij, xj, and yj are initialized. ui is set to 0. Each sensing
task will be placed in a cell randomly with no overlap between other sensing tasks.

In the execution phase, available users start their turns by selecting and committing to a
sensing task based on Algorithm 1. Then, the user will update its sj. In turn, the user
information associated with the sensing task sj will be updated to reflect that the user ui

now performs task sj. If no suitable sensing task is found, then the user drops out of the
trial for all future turns. Unavailable users are the ones who have not dropped out and
are committing their turns by moving towards their sensing tasks. If the user lands on the
sensing task, then ai increases by Rij. If the user is not on the sensing task, then the user
must wait another turn to move closer. In both cases, Cij, xi, and yi are updated to reflect
the current user location.

6 Results

Incentive mechanisms are evaluated and compared in three scenarios corresponding to low,
medium, and high area coverage percentages for pavement crowdsensing with different num-
bers of users. The platform cost is used to order the incentive mechanisms based on their
performance data as shown in the following figures. The minimal budgets shown in the
figures are the lowest budgets that can realize a 100% success rate for the targeted area
coverage percentage. It means that any budgets higher than this value allow the platform
to achieve the 100% success rate for the targeted area coverage.
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6.1 Platform cost comparison

In this subsection, we discuss the comparison of incentive mechanisms in terms of the plat-
form cost.

• Given 25% area coverage, Fig. 1 shows that the SU and DR incentive mechanisms
respectively have the lowest platform costs when the platform has 3 users and 15
users. Apart from this, the static and dynamic pit incentive mechanisms always rank
among the top three incentive mechanisms in all scenarios.

• Given 50% area coverage, Fig. 2 shows that static and dynamic pit incentive mech-
anisms still have the best performances of the platform cost in all scenarios. Even
though the DTC incentive mechanism achieves the lowest platform cost in 50% area
coverage with 45 users, this observation does not conflict with the previous statement.

• Given 75% area coverage, Fig. 3 shows that SPIT and DPIT always have the lowest
platform cost regardless of how many users the platform has.

Figure 1: Incentive mechanism comparison: 25% area coverage

Based on the observations described above, we can conclude that SPIT and DPIT are
two incentive mechanisms that have the lowest platform cost.
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Figure 2: Incentive mechanism comparison: 50% area coverage
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Figure 3: Incentive mechanism comparison: 75% area coverage
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6.2 Total operation time comparison

In this subsection, we discuss the comparison of incentive mechanisms in terms of the total
operation time. From Figs. 1, 2, and 3, the total operation time of the task-reverse-auction
(TRA) incentive mechanism is nearly twice as the total operation times of ours. Addition-
ally, the total operation time of the TRA incentive mechanism becomes longer as the number
of participatory users increases while the total operation times of our incentive mechanisms
would decrease in the same situation. Therefore, this result proves that our incentive mech-
anisms have much less total operation time than the task-reverse-auction (TRA) incentive
mechanism.

7 Conclusion and Future Work

In this report, we proposed eight incentive mechanisms based on a platform-driven greedy
algorithm to help the crowdsensing platform motivate users to collect pavement condition
data. Since our incentive mechanisms allow users to select the sensing tasks based on a
platform-driven greedy algorithm before they start to collect the data, they can avoid the
cost explosion problem observed in the data-reverse-auction incentive mechanisms. From
the simulation results, we find that SPIT and DPIT are the incentive mechanisms that have
the lowest platform cost. Compared with the task-reverse-auction incentive mechanism,
our incentive mechanisms reduce the total operation time by half. Our future research in-
cludes large-scale simulations and real-life experiments by extending our prototype pavement
crowdsensing system.
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Abstract—Crowdsensing is the umbrella term for the idea of
individuals, or rather “crowds”, contribute data through “sens-
ing” for a common interest. We have designed and implemented
a crowdsensing system solution for low-cost and scalable pave-
ment monitoring. This work-in-progress paper describes a new
concept of a “bring-your-own-CPU-and-algorithm” policy based
on blockchain to address the challenges of privacy preservation,
data integrity, and incentivizing participation in crowdsensing.

I. INTRODUCTION

A. Problem Statement

Nationwide, over 19% of the roads are in poor conditions
and require repair, which consequently leads to loss of billions
of dollars a year in congestion and delays. This results in
an extra 3.1 billion gallons of fuel wasted. It is desirable to
constantly monitor the pavement condition of the road network
so that preventive maintenance can be timely scheduled and
performed. The task of detecting, classifying and tabulating
data of pavement conditions is a tedious task. With 4.18
million miles of road in the United States, it is intuitively
time consuming and cost intensive to monitor the conditions
of such a large transportation network. As 77% of this mileage
is maintained by local governments, 19% by state, and 4% by
federal and due to budget constraints, a large portion of the
road networks are not monitored.

B. Crowdsensing and its Challenges

There are existing research and solutions that make the
road pavement monitoring more efficient, e.g. transforming
it from manual pavement distress detection and classification
to automatic processing [1], taking advantage of connected
vehicle data [2], using smart phones for continuous road con-
dition monitoring [3][4], and detecting pavement defects based
on entropy [5]. For example, Roadroid [4] and RoadLabPro
[6] make it possible to provide a crowdsensing solution to
pavement monitoring and preventive maintenance covering the
whole road networks in a cost-effective way.

However, surveys of mobile crowdsensing [7] [8] show that
there are many challenges that need to be addressed by the
state of the art, such as privacy preservation, data integrity,
and incentivizing participation.

C. Contributions

In our research we design and implement a crowdsensing
system for road pavement monitoring. We propose and study a

new concept of a “bring-your-own-CPU-and-algorithm” policy
based on blockchain to address the challenges of privacy
preservation, data integrity, and incentivizing participation in
crowdsensing.

II. CROWDSENSING SYSTEM SOLUTIONS

The mobile application of the crowdsensing system is
capable of capturing images of road pavement conditions,
processing them using machine learning (ML) algorithms,
and uploading corresponding sensor data including image and
location information of the detected pavement problems to the
backend. Such information is stored in a structured manner in
the backend that can be easily queried or further processed.
The backend also provides the hosting and business logic
of an administrative interface. Figure 1 shows the snapshots
of pothole detection (left), crack detection (top right), and
visualization of the administrative interface.

Fig. 1. Pothole and Crack Detection and Administrative Dashboard

III. A NEW INCENTIVE MECHANISM FOR CROWDSENSING

When using of blockchain in the crowdsensing of pavement
monitoring, the main value added derives from the intersec-
tion between machine learning (ML) and blockchain. With
a centralized model, the central system is responsible for
procuring the graphics processing power to run the machine
learning (ML) algorithm on all the images to be processed.
This approach does not scale well. A decentralized approach
with incentive mechanism based on blockchain, however, can
potentially accomplish two improvements in this regard.
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A. Crowdsourcing Data Processing Algorithm and Power

A “bring-your-own-CPU-and-algorithm” policy would sim-
ply “crowdsource” the two resources that are bottlenecks in
the crowdsensing system design. A model where participants
compete to see who can have the best algorithm and/or
computing capability, in exchange for cryptocurrency reward.
In this scenario, there is no longer any need to amass any
significant hashing power in house, and the algorithm no
longer needs to be developed in house. ML algorithms “learn”
from the data they process, so here both the data and the
algorithm are crowdsourced. For example, if a participant’s
ML algorithm can correctly classify the entire blockchain of
images of pavement conditions so far as well as some number
of additional images that are to be added to the dataset, and is
also the first to do so, the participant is rewarded with cryp-
tocurrency. This way the ML is constantly improving its own
substance and expanding its data set, with its computational
labor being fully distributed among its participants.

B. Data Integrity

A chain is as strong as its weakest link, and the blockchain
is no exception. If someone were to compromise the integrity
of this system, they could very well automate its exploitation,
and rapidly amass ill gotten cryptocurrency, which is why the
sanitization of the initial input data such as images is crucial.
Therefore this system is not free of responsibility. Given the
nature of a model that compensates based on contribution,
there will of course be users who seek to cheat. For example,
a user could potentially supply fake images from outside the
official client app, leading everyone to believe that there are
potholes where there aren’t any. To prevent this, the client app
and blockchain system will need to have measures in place to
ensure the integrity of the input data. One avenue to pursue
is by having the client app embed a unique signature using
one-way cryptography so that every node in the network can
verify that the origin of the image was the official client app.
There exists studies using blockchain to verify the integrity
of videos recorded from an Android device, with a 98.1%
accuracy, thereby proving that such a measure is possible [9].

C. Ethereum based Implementation

Ethereum, one of the larger cryptocurrencies, is known for
its distributed application (dApps) platform. The underlying
blockchain for this project has so far been implemented using a
private Ethereum network. Participants can mine, and thereby
process research data, by running an Ethereum compatible
“full node”. Nodes are “full”, if they enforce all rules of the
network. Participants can act as a full node for this project by
using any Ethereum full node software. This project has been
tested using Geth, which is a command line interface written
in Go.

The project’s private Ethereum network supports transac-
tions, so participants can freely move the project’s generic
currency in the same manner as one would send official
Ethereum cryptocurrency, using either Ethereum compatible
wallet software, or from the command line. From the full

node software, participants can process whatever machine
learning workload propagated to it. To test this capability and
assess its feasibility for the proposed goals of this project,
the network was test driven using a publicly available IMDB
sentiment classifier distributed by Microsoft [10]. Using the
React dashboard, a workload can be added to the blockchain,
and participants who are mining can supply a sentiment
prediction in exchange for reward. Given that the underlying
blockchain is not bound to any particular machine learning
algorithm, the project gains versatility in that the framework
can seamlessly be adapted to any machine learning workload
simply by propagating that workload to the network for active
full nodes to mine. The pavement monitoring machine learning
algorithm is inherently suitable for use on this network, with
the only caveat being the security concern discussed above,
which needs to be addressed prior to user adoption.

IV. CONCLUSION AND FUTURE WORK

In this research we design and implement a mobile crowd-
sensing system for road pavement monitoring. Machine learn-
ing models are used in sensing data analysis in a distributed
manner. We have proposed crowdsourcing data processing al-
gorithms and related computation powers based on blockchain.
Ongoing and future research work will focus on evaluations
of this blockchain-based incentive mechanism for crowd par-
ticipation, data integrity and privacy preservation.
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